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ABSTRACT:

This paper is concerned with the regular patterning (or tiling) of the five regular polyhedra (known as the

Platonic solids). The symmetries of the seventeen classes of regularly repeating patterns are considered, and

those pattern classes that are capable of tiling each solid are identified. Based largely on considering the

symmetry characteristics of both the pattern and the solid, a first step is made towards generating a series of

rules governing the regular tiling of three-dimensional objects.
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1. INTRODUCTION

A polyhedron has been defined by Coxeter as “a finite, connected set of plane polygons, such that every side

of each polygon belongs also to just one other polygon, with the provision that the polygons surrounding each

vertex form a single circuit”  (Coxeter, 1948, p.4).  The polygons that join to form polyhedra are called faces,



2

these faces meet at edges, and edges come together at vertices.  The polyhedron forms a single closed

surface, dissecting space into two regions, the interior, which is finite, and the exterior that is infinite (Coxeter,

1948, p.5).

The regularity of polyhedra involves regular faces, equally surrounded vertices and equal solid angles (Coxeter,

1948, p.16).  Under these conditions, there are nine regular polyhedra, five being the convex Platonic solids

and four being the concave Kepler-Poinsot solids. The term regular polyhedron is often used to refer only to

the Platonic solids (Cromwell, 1997, p.53). There are only five possible regular convex polyhedra (or Platonic

solids) composed of regular polygonal faces with all vertices equally surrounded: the (regular) tetrahedron,

(regular) octahedron, cube (or regular hexahedron), (regular) icosahedron and the (regular) dodecahedron

(Figure 1). The proof of the existence of only five is discussed in Euclid’s Elements, Book XIII (1956,

proposition 18).

Figure 1: The regular polyhedra (or Platonic solids)

The regular polyhedra, and other more complex solids, have played an important role in art, design,

engineering and science down through the centuries. In the Timaeus, Plato announced that the triangle (or the

tetrakyst) was the building block of the universe. He presented this rather fanciful idea and others about

creation, suggesting a process not unlike a geometric progression. Also in the Timaeus, Plato described how

triangles made up the five regular solids and how these were associated with the four elements (earth, fire, air

and water) and the universe (Annas, 1996, pp.1190–1193). Polyhedra have been associated with art and

design for many centuries. A notable peak was reached during the Italian Renaissance. Relevant artists include

Paola Uccello (1397–1475), Piero della Francesca (1410–1492), Leonardo da Vinci (1452–1519) and Luca

Pacioli (1445–1517). Fra Giovanni da Verona produced a collection of intarsia (mosaics of inlaid wood)

depicting various polyhedra around 1520. Interest was shown also by Albrecht Durer (1471–1528) and M. C.

Escher (1898–1972). Johannes Kepler (1571–1630) produced some early drawings.
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As a component of a wider ranging research project (covering many of the geometric aspects of design) the

authors are currently considering the symmetry rules that may govern the regular patterning (or tiling) of the

five regular polyhedra. The important challenge is to ensure precise registration and the absence of gaps or

overlaps; this is neither a trivial nor a straightforward matter. Readers who doubt this may wish to reflect on

the tiling problems associated recently with the space shuttle Discovery.

When regular repeating patterns, which perform with satisfaction on the Euclidean plane, are folded several

times, into different planes, their component parts will not correspond readily. Only certain pattern types, with

particular symmetry characteristics, are suited to the precise patterning of each Platonic solid. There are

various difficulties encountered in attempting to apply two-dimensional repeating designs to regular polyhedra,

avoiding gap and overlap and ensuring precise registration. This paper acknowledges the symmetry

characteristics of importance to the process and identifies appropriate pattern types for each of the regular

solids. Relevant illustrations are provided. It should be noted that this paper reports on the outcome of

research completed to date, and that it is recognized by the authors that the results presented are not all

encompassing. It is the intention to develop further the systematic means by which particular patterns may be

applied to polyhedra. The longer-term intention is to extend the enquiry to take account of more complex

solids (such as, for example, the semi-regular polyhedra or Archimedean solids).

2. LATTICE STRUCTURES, FUNDAMENTAL REGIONS AND POLYHEDRAL NETS

It is well established that regularly repeating patterns (or tilings) exhibit symmetries, which combine to

produce seventeen possibilities across the plane (shown schematically in Figure 2 together with the relevant

internationally accepted notation from the International Union of Crystallography). Proof of the existence of

only seventeen all-over pattern classes was provided by Weyl (1952), Coxeter (1969) and Martin (1982).

Designs possessing the same symmetry combinations are said to belong to the same symmetry class, and may

be classified accordingly. Further accounts of the classification and construction of regularly repeating patterns

and tilings are been given by Woods (1935), Schattschneider (1978), Stevens (1984), Washburn and Crowe

(1988) and Hann and Thomson (1992) and Hann (2003). In the context of this paper it is of importance to

recognize that across the seventeen pattern types, different combinations of symmetry are exhibited (e.g.

reflection axes in various directions and/or two-, three-, four- and six-fold rotational symmetry).
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Figure 2: Schematic representations of the seventeen classes of regularly repeating patterns.
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Turning attention to three-dimensions, a polyhedron is a three-dimensional solid that consists of a collection

of polygons, usually joined at their edges. Composed of faces identical in size and shape, equally surrounded

vertices and equal solid angles, the regular convex solids, known as the Platonic solids, are highly symmetrical

polyhedra. The symmetry characteristics of reflection and rotation that govern the properties of regularly

repeating patterns and tilings, are of importance also to three-dimensional solids.

In regularly repeating plane patterns, a further geometrical element of importance to pattern structure is the

underlying framework or lattice, of which there are five distinct types: parallelogram, square, rectangular,

hexagonal, rhombic centered-cell. Each lattice is comprised of unit cells of identical size, shape and content,

which contain the essential repeating unit or element of the pattern or tiling, as well as the symmetry

instructions for the pattern’s construction. The unit cells associated with the seventeen pattern classes are

illustrated in Figure 3.

Figure 3: The seventeen unit cells associated with regularly repeating patterns.
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The purpose of the investigation reported in this paper is to discover which of the seventeen pattern classes

can repeat regularly around (or tile) the Platonic solids, applying only the restriction that the unit cell must

repeat across the solid in exactly the same way that it does in the plane pattern.

The first step in regularly tiling a regular polyhedron involves matching the polyhedral faces to a suitable lattice

type. Suitable patterns applicable to the tetrahedron, octahedron and icosahedron, whose faces are equilateral

triangles, must be constructed on a hexagonal lattice, where the unit cell comprises two equilateral triangles.

The cube is the only Platonic solid that is composed of square faces. All pattern classes constructed on a

square lattice can thus be considered suitable to repeat around the surface of the cube. Patterning the

dodecahedron, composed of regular pentagonal faces, requires a different approach. The regular pentagon,

with five-fold rotational symmetry, cannot tile the plane without gap or overlap. There are, however, fourteen

(known) types of equilateral pentagons that can tessellate the plane (Wells, 1991, pp.177-179). Probably the

best known is the Cairo tessellation (Figure 4), formed by convex equilateral pentagons (equal-length sides,

but different associated angles). Using the Cairo tessellation it is possible to devise a method by which to tile

the dodecahedron.

Figure 4: The Cairo tessellation.

3. TILING THE PLATONIC SOLIDS

Table 1 presents the findings of this research and lists the pattern classes appropriate to each of the Platonic

solids and identifies the associated lattice structures, unit cell areas and other symmetry characteristics.
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Platonic solid

Pattern class

Lattice
structure

A
rea of unit

cell on face

V
ertices

equivalent

Rotation
present on
vertices

Rotation
present on
edges

Rotation
present on
faces

Reflection
present on
edges

Reflection
present on
faces

p2 hexagonal 1/2  2-

c2mm hexagonal 1/2  2-  

p6 hexagonal 1/2  3- 2- 3-
Tetrahedron

p6mm hexagonal 1/2  3- 2- 3-  

p3 hexagonal 1/2  2- 3-

p31m hexagonal 1/2  2- 3- 

p3m1 hexagonal 1/2  2- 3-

p3m1 hexagonal 1/6
a) 2-
b) 2-
c) 2-



p6 hexagonal 1/2  4- 2- 3-

p6 hexagonal 1/6
a) 4-
b) 2- 2-

p6mm hexagonal 1/2  4- 2- 3-  

Octahedron

p6mm hexagonal 1/6
a) 4-
b) 2- 2-  

p6 hexagonal 1/2  5- 2- 3-
Icosahedron

p6mm hexagonal 1/2  5- 2- 3-  

p4 square 1  3- 2- 4-

p4mm square 1  3- 2- 4-  Cube

p4gm square 1  3- 2- 4-

Dodecahedron p4 square 1/2  3- 2- 5-

Table 1: Symmetry characteristics of regularly tiled Platonic solids.

The tetrahedron, the octahedron and the icosahedron have, respectively, four, eight and twenty equilateral

triangles as faces. The cube has six square faces and the dodecahedron has twelve regular pentagons as faces.

Polyhedra may be drawn as plane diagrams, known as nets, in which the faces and edges of the polyhedron

are shown. These may be considered as unfolded polyhedra. The net of a polyhedron may specify which

edges are to be joined, as in some cases, it is possible for a net to represent several polyhedra. There may be

several possible nets that represent a single polyhedron. The tiling of each of the five Platonic solids is

considered below.
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3.1. TILING THE TETRAHEDRON

The tetrahedron is a pyramid on a triangular base and the simplest of the Platonic solids (Coxeter, 1948, p.4).

The tetrahedron consists of four equilateral triangular faces, four vertices and six edges. Each of the four

vertices is surrounded by three triangles, which produces a vertex angle (sum of the vertex angles of the

polygons meeting at each polyhedron vertex) of 180 degrees (Wenninger, 1971, p.1). The tetrahedron has

seven axes of rotational symmetry: four axes of three-fold rotation connect each vertex with the midpoints of

the opposite faces, and three axes of two-fold rotation pass through midpoints of the opposite edges. In

addition to rotational symmetry, the tetrahedron possesses six planes of reflection passing through axes of

two-fold rotation and the edges of the tetrahedron. The tetrahedron is its own dual polyhedron and therefore

connecting the centers of the faces of a tetrahedron forms another tetrahedron.

It is possible to tile the tetrahedron with certain patterns possessing two-fold and six-fold rotational symmetry

(classes p2, c2mm, p6 and p6mm). Relevant illustrations are given in Figures 5 to 12.

Figure 5: Illustration of a design for the tetrahedron regularly tiled with pattern class p2
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Figure 6: The tetrahedron regularly tiled with pattern class p2

Figure 7: Illustration of a design for the tetrahedron regularly tiled with pattern class c2mm
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Figure 8: The tetrahedron regularly tiled with pattern class c2mm

Figure 9: Illustration of a design for the tetrahedron regularly tiled with pattern class p6
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Figure 10: The tetrahedron regularly tiled with pattern class p6

Figure 11: Illustration of a design for the tetrahedron regularly tiled with pattern class p6mm
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Figure 12: The tetrahedron regularly tiled with pattern class p6mm

3.2. TILING THE OCTAHEDRON

The octahedron may be regarded as a dipyramid, formed by placing two equal square-based pyramids base to

base [Coxeter, 1948, p.5]. The octahedron is composed of eight equilateral triangular faces, twelve edges and

six vertices. Four triangular faces surround each vertex, which results in a vertex angle of 240 degrees

[Wenninger, 1971, p.1]. The octahedron displays six axes of two-fold rotation passing through the midpoint of

opposite edges, four axes of three-fold rotation connecting the centre of opposite faces and three axes of

four-fold rotation joining opposite vertices. In addition to rotational symmetry, the octahedron exhibits nine

planes of reflection. The octahedron possesses the same symmetry characteristics as the cube.

Pattern classes p3, p3m1, p31m, p6 and p6mm are each suited to patterning the octahedron. Relevant

illustrations are provided in Figures 13 to 28.



13

Figure 13: Illustration of a design for the octahedron regularly tiled with pattern class p3

Figure 14: The octahedron regularly tiled with pattern class p3
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Figure 15: Illustration of a design for the octahedron regularly tiled with pattern class p3m1

Figure 16: The octahedron regularly tiled with pattern class p3m1
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Figure 17: Illustration of a design for the octahedron regularly tiled with pattern class p31m

Figure 18: The octahedron regularly tiled with pattern class p31m
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Figure 19: Illustration of a design for the octahedron regularly tiled with pattern class p6

Figure 20: The octahedron regularly tiled with pattern class p6



17

Figure 21: Illustration of a design for the octahedron regularly tiled with pattern class p6mm

Figure 22: The octahedron regularly tiled with pattern class p6mm
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Figure 23: Illustration of a design for the octahedron regularly tiled with pattern class p3m1, where the area used to tile each face is

equal to one-sixth of the unit cell

Figure 24: The octahedron regularly tiled with pattern class p3m1, where the area used to tile each face is equal to one-sixth of the

unit cell
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Figure 25: Illustration of a design for the octahedron regularly tiled with pattern class p6, where the area used to tile each face is equal

to one-sixth of the unit cell

Figure 26: The octahedron regularly tiled with pattern class p6, where the area used to tile each face is equal to one-sixth of the unit

cell



20

Figure 27: Illustration of a design for the octahedron regularly tiled with pattern class p6mm, where the area used to tile each face is

equal to one-sixth of the unit cell

Figure 28: The octahedron regularly tiled with pattern class p6mm, where the area used to tile each face is equal to one-sixth of the

unit cell
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3.3.TILING THE ICOSAHEDRON

The icosahedron consists of twenty equilateral triangular faces. A total of twelve vertices and thirty edges are

present on the solid.  Each vertex is surrounded by five equilateral triangles producing a vertex angle of 300

degrees (Wenninger, 1971, p.1). The icosahedron displays a similar set of symmetries as the dodecahedron.

Fifteen axes of two-fold rotation join the midpoints of opposite edges. Ten axes of three-fold rotation pass

through the centers of opposite faces, and six axes of five-fold rotation connect opposite vertices.

Comparable with the dodecahedron, the icosahedron also exhibits fifteen planes of reflection.

Only pattern classes containing six-fold rotation are applicable to regularly tiling the icosahedron. The

icosahedron possesses the same rotational properties found in pattern class p6 and therefore the icosahedral

rotational symmetries are preserved in the tiled solid. In addition to pattern class p6, with its inherent

rotational symmetry, pattern class p6mm, which exhibition reflection also, accommodates the reflection

properties of the icosahedron. Relevant illustrations are provided in Figures 29 to 32.

Figure 29: Illustration of a design for the icosahedron regularly tiled with pattern class p6
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Figure 30: The icosahedron regularly tiled with pattern class p6

Figure 31: Illustration of a design for the icosahedron regularly tiled with pattern class p6mm
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Figure 32: The icosahedron regularly tiled with pattern class p6mm

3.4. TILING THE CUBE

The regular hexahedron, more commonly known as the cube, consists of six square faces that meet at right

angles, any of which may be regarded as the base. A total of eight vertices and twelve edges are evident, with

each vertex surrounded by three square polygon faces, resulting in a vertex angle of 270 degrees (Wenninger,

1971, p.1). The cube possesses thirteen axes of rotational symmetry. Six axes of two-fold rotation pass

through the centers of opposite edges and four axes of three-fold rotation coincide with the diagonals of the

cube, connecting its opposite vertices. Axes of four-fold rotation also connect the midpoints of opposite faces,

with all axes of rotation passing through the centre of symmetry. The existence of a centre of symmetry in the

cube is shown by the fact that each face has a corresponding equal and parallel face (Shubnikov and Koptsik,

1974, p.56). The cube also exhibits a total of nine planes of reflection.

Connecting points of four-fold rotation in plane pattern classes p4, p4gm and p4mm produces a square grid,

which will lend itself readily to the tiling of the cube. The application of these pattern classes to the cube

maintains cubic rotational symmetry; three-fold rotation is preserved at the vertices, two-fold rotation at the

mid-point of each edge and four-fold rotation at the centre of each face. A cube tiled with pattern class

p4mm also retains the reflection symmetry of the cube with a total of nine reflection planes slicing through

each face and each of the twelve edges. Illustrations of the cube regularly tiled with pattern classes p4, p4gm

and p4mm are shown in Figures 33-34, 35-36 and 37-38 respectively.
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Figure 33: Illustration of a design for the cube regularly tiled with pattern class p4

Figure 34: The cube regularly tiled with pattern class p4
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Figure 35: Illustration of a design for the cube regularly tiled with pattern class p4gm

Figure 36: The cube regularly tiled with pattern class p4gm
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Figure 37: Illustration of a design for the cube regularly tiled with pattern class p4mm

Figure 38: The cube regularly tiled with pattern class p4mm



27

3.5. TILING THE DODECAHEDRON

The dodecahedron is composed of twelve pentagonal faces, thirty edges and twenty vertices. Each vertex is

surrounded by three pentagonal faces, displaying vertex angles of 216 degrees (Wenninger, 1971, p.1). The

dodecahedron presenting thirty-one axes of rotational symmetry. Fifteen axes of two-fold rotation pass

through the midpoint of opposite edges, ten axes of three-fold rotation connect opposite vertices, and six

axes of five-fold rotation link the centers of opposite faces. In addition to rotational symmetry the

dodecahedron also exhibits fifteen planes of reflection.

As mentioned previously, the regular tiling of the dodecahedron requires a different approach than the other

Platonic solids as five-fold rotational symmetry is not possible in the seventeen all-over pattern classes. There

are however fourteen types of irregular pentagons that will tessellate the plane. Of these types, the Cairo tiling

(dual tessellation of the semi-regular snub square tiling 3.3.4.3.4) composed of equilateral pentagons, is

geometrically the closest to a regular pentagon. The Cairo tessellation may be classified as pattern type p4gm.

However, if a motif is created within each pentagonal tile that possesses five-fold rotational symmetry, the

tessellation’s reflection axes are destroyed and the tiling becomes classifiable as the lower symmetrical pattern

class p4. A relevant illustration is given in Figure 39.

Figure 39: Illustration of the cube inscribed within the dodecahedron and the resultant tiled dodecahedron
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4. IN CONCLUSION

The patterning of the five regular solids, in ways that ensure regular repetition and precise registration of the

applied pattern is not a straightforward matter. When regularly repeating patterns are folded into different

planes, their component parts may not correspond readily. As is the case in two-dimensions, patterns rely on

their constituent symmetries to repeat by rotation (at the edges and vertices) and/or through successive

reflection present at the edges of the solid. This paper identifies appropriate pattern types for each of the

regular solids and presents illustrations of their application.

Only ten of the seventeen primary classes of all-over patterns can be applied to regularly repeat across the

faces of the Platonic solids. These pattern classes are all based on either a hexagonal or a square lattice

structure. It is apparent from Table 1 that for a plane pattern to tile the regular solids it must possess

symmetry axes of two-fold rotation or higher. This contradicts an earlier study by Pawley (1962), which states

that plane patterns must have a symmetry axis higher than the second order to fit onto polyhedra, as classes

p2 and c2mm are suited to tiling the tetrahedron. These are the only two pattern types, discovered during

this investigation, that exhibit the highest rotational symmetry of order two and are capable of tiling a Platonic

solid. When applied to the tetrahedron these patterns are the only classes that do not exhibit rotation at

vertices (see Figures 5 and 6). By way of summary the following rules can be presented at this stage:

• The tetrahedron, octahedron and icosahedron can only be regularly tiled with patterns based on an

hexagonal lattice. The cube can only be regularly tiled with patterns based on a square lattice. Only

patterns based on the hexagonal or square lattice structures are applicable to the tiling of the regular

polyhedra.

• The Platonic solids can be regularly tiled by a pattern exhibiting higher rotational symmetry than the solid

without altering the rotational properties of the solid. The axis of highest rotational symmetry must be

present at the corners of the unit cell allowing the axes to fall on the solids vertices. Therefore, the

tetrahedron, octahedron and icosahedron can be tiled with pattern classes p6 and p6mm, which contain

higher rotational symmetry than the solids. The cube can be tiled with pattern classes p4, p4gm and

p4mm.

• A solid can be regularly tiled with a pattern class containing lower rotational symmetry if the number of

faces exhibited by the solid allows for complete repetition of the unit cells.
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• The tetrahedron can be regularly tiled by a pattern possessing only rotational symmetry of the order of

two provided that points of rotation are present at the mid-point of each edge. The four faces of the

tetrahedron allow two complete repeats of a hexagonal unit cell across its faces. Therefore, the

tetrahedron can be regularly tiled with pattern classes p2 and c2mm.

• The octahedron may be tiled with pattern classes exhibiting a highest order of rotation of three, due to

the even number of faces surrounding each vertex which allow two repetitions of the unit cell around each

vertices and a total of four repetitions across the solid. Therefore, the octahedron can be regularly tiled

with pattern classes p3, p3m1 and p31m.

• The presence of reflection planes on a tiled solid is determined by the presence of reflection in the plane

pattern.

• A solid may be regularly tiled using an area smaller than half the unit cell of a plane patterns. The tile must

contain the fundamental region of the pattern and must satisfy the rotational symmetry requirements of

rules two, three and four. Therefore the octahedron can be tiled with an area equal to one-sixth of the

unit cell of pattern classes p3m1, p6 and p6mm.

• The dodecahedron cannot be tiled with a conventional regularly repeating pattern due to the five-fold

rotational symmetry of the former. Manipulation of the Cairo tessellation (composed of equilateral

pentagons) produces an appropriate tiling.

As noted previously, the research reported in this paper is a component part of a much wider ranging

research project considering a wide range of geometric principles and the development of fundamental

concepts relating to the use of geometry as a problem-solving tool. In the context of tiling three-dimensional

solids, it is the intention to develop further this research to include the semi-regular or Archimedean solids

and more complex polyhedra. The fundamental nature of this research suggests possible avenues for

interdisciplinary collaborative enquiry. The relationship between solid geometry and the field of structural

biology was forged nearly 50 years ago when Caspar and Klug looked outside the field of biology and drew

inspiration from the geodesic domes of Buckminster Fuller in developing their theory on virus structures

(Caspar and Klug, 1962). Discoveries in the fields of geometry and architecture have had a beneficial influence

on virus research and although it is currently unknown how the research findings presented within this paper

fit into the current body of knowledge in structural biology, there is a sense that it might prove to be a

worthwhile contribution.
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